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A Single, Mild, Transient Scrotal Heat Stress Causes Hypoxia and Oxidative Stress
in Mouse Testes, Which Induces Germ Cell Death1
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ABSTRACT

Spermatogenesis is a temperature-dependent process, and
increases in scrotal temperature can disrupt its progression. We
previously showed that heat stress causes DNA damage in germ
cells, an increase in germ cell death (as seen on TUNEL staining),
and subfertility. The present study evaluated the stress response
in mouse testes following a single mild transient scrotal heat
exposure (408C or 428C for 30 min). We investigated markers of
three types of stress response, namely, hypoxia, oxidative stress,
and apoptosis. Heat stress caused an increase in expression of
hypoxia-inducible factor 1 alpha (Hif1a) mRNA expression and
translocation of HIF1A protein to the germ cell nucleus,
consistent with hypoxic stress. Increased expression of heme
oxygenase 1 (Hmox1) and the antioxidant enzymes glutathione
peroxidase 1 (GPX1) and glutathione S-transferase alpha (GSTA)
was consistent with a robust oxidative stress response. Germ cell
death was associated with an increase in expression of the
effector caspase cleaved caspase 3 and a decrease in expression
of the protein inhibitor of caspase-activated DNase (ICAD).
Reduced expression of ICAD contributes to increased activity of
caspase-activated DNase and is consistent with the increased
rates of DNA fragmentation that have been detected previously
using TUNEL staining. These studies confirmed that transient
mild testicular hyperthermia results in temperature-dependent
germ cell death and demonstrated that elevated temperature
results in a complex stress response, including induction of genes
associated with oxidative stress and hypoxia.
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INTRODUCTION

The importance of thermoregulation in the testis is
illustrated by the fact that slight increases in temperature can
disrupt spermatogenesis and ultimately cause problems with
fertility [1–6]. The testis displays a variety of mechanisms that
are triggered on exposure to stress, including DNA repair, heat
shock response, oxidative stress response, and apoptosis and
cell death. Testes in most mammals are found in the scrotum
outside the main body cavity and are thus 2–88C below core
body temperature [7, 8]. In addition, the temperature within the

testis is regulated by a countercurrent heat exchange system
between the pampiniform plexus and the testicular artery. Any
disruption to this system may cause problems with spermato-
genesis.

Previous findings have suggested that increased metabolism
in the testis after heat stress may not be met by a sufficient
increase in blood flow [9]. Thus, there is a possibility of the
testis becoming hypoxic [10]. Hypoxia occurs when the
oxygen tension drops below that required for normal cellular
function in a particular tissue. This can be in response to
inadequate blood flow into the tissue or reduced oxygen
transport capacity [11]. Hypoxia has been shown to result in
cell cycle arrest and apoptosis [12, 13]. Hypoxia-inducible
factor (HIF) is composed of a and b (ARNT) subunits, which
dimerize under hypoxic conditions [14]. Activation of HIF
during hypoxic conditions leads to HIF1A binding to specific
response elements in target genes involved in vasodilation,
angiogenesis, and glycolysis [15, 16].

The production of free radicals and reactive oxygen species
(ROS), including the superoxide anion and hydrogen peroxide,
can induce positive changes in sperm function, including
hyperactivation, capacitation, and the acrosome reaction [17].
However, high levels of these species can be deleterious and
cause oxidative damage to DNA, and there have been several
studies [18–20] linking oxidative stress to male fertility
problems. The testis contains a number of antioxidant proteins
that serve to protect germ cells from oxidative damage. These
include superoxide dismutase (SOD), glutathione reductase
(GSR), glutathione peroxidase (GPX), glutathione S-transfer-
ase (GST), and heme oxygenase 1 (HMOX1) [21, 22]. The
heme oxygenase system has an important role in protecting
cells from the deleterious effects of oxidative stress and
consists of heme oxygenase proteins (inducible HMOX1 and
constitutive HMOX2) [23].

In many cell types, hypoxia and oxidative stress have been
shown to trigger apoptosis and cell death [24, 25]. One of the
hallmarks of apoptosis is the fragmentation of DNA, thought to
be mediated by caspase-activated DNase (CAD) and modulat-
ed by its inhibitor (ICAD), which inhibits CAD-induced
degradation of nuclear DNA [26]. It is believed that caspase 3
cleaves ICAD to inactivate its inhibiting effect on CAD,
thereby inducing DNA fragmentation in one of the final steps
of apoptosis [27].

Several rodent models have been used to study the effect of
heat stress on the testis, including transient exposure of testes
to elevated temperatures (typically .408C), surgical induction
of cryptorchidism resulting in long-term exposure of testes to
core body temperature (378C), or housing of males at elevated
temperatures (e.g., 35–368C) for several hours [28–30]. We
previously demonstrated that mild scrotal heat stress was
associated with a temperature-dependent increase in DNA
strand breaks, greater germ cell loss, and persistence of
damaged DNA in sperm [6]. In the present study, we
investigated the nature of the stress response in the mouse
testis following transient scrotal heat. Our results demonstrate
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that transient mild hyperthermia causes hypoxia and oxidative
stress and that this occurs in a temperature-dependent manner.

MATERIALS AND METHODS

Animals

Male C57BL/6 mice were maintained under standard conditions according
to United Kingdom (UK) Home Office guidelines, with free access to food and
water. All mice were purchased from Harlan Sprague-Dawley Inc. (Oxford,
UK). Three hours to 28 days after heat shock, animals were killed by cervical
dislocation.

Induction of Transient Heat Stress

Males aged 8–9 wk were subjected to a single heat stress of 408C or 428C
for 30 min. Each animal was anesthetized, and the lower third of the body (hind
legs, tail, and scrotum) was submerged in a water bath. Control animals were

anesthetized and left at room temperature. After 30 min, each animal was

administered an anesthetic reversal agent (Antisedan; Pharmacia and Upjohn,

Corby, UK), dried, and returned to its cage.

Immunohistochemistry

One testis was immersion fixed in Bouin solution for 8 h. Sections (5 lm)

were mounted on charged slides, and antigen retrieval was performed using 0.01

M citrate buffer (pH 6.0), with washes and blocking of endogenous peroxidase

as described by Saunders et al. [31]. Nonspecific binding sites were blocked

using normal goat serum (NGS) (Autogen Bioclear UK Ltd., Wiltshire, UK)

diluted 1:4 in bovine serum albumin (BSA)/Tris-buffered saline (TBS) (5%, w/

v) for 30 min. Sections were incubated overnight at 48C with rabbit polyclonal

antibodies specific for cleaved caspase 3 (Cell Signaling Technology, Beverly,

MA) or HIF1A, both diluted 1:200 in NGS/TBS/BSA, and control sections were

incubated with blocking serum alone. Bound antibodies were detected according

to standard methods [31]. Counts of caspase 3-positive germ cells were made on

a Provis AX70 microscope (Olympus Optical, London, UK). This was achieved

FIG. 1. Hif1a mRNA expression (A) and
immunolocalization of protein (B–J) in
testes from control and heat-stressed mice at
24 h (B, E, and H [inset shows negative
control]), 48 h (C, F, and I), and 7 days (D,
G, and J) after treatment. Arrowheads in
panels E, F, and I identify immunopositive
cells within the interstitium (presumptive
Leydig cells), where the intensity of immu-
nostaining appears increased compared
with that in controls. Arrows show HIF1A-
positive germ cells. Bar ¼ 100 lm. *P ,
0.05, ***P , 0.001 (n ¼ 4).
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by counting the total number of positive cells in four testis sections per animal,
obtained at least 50 lm apart. Images were captured from a microscope (BH2;
Olympus Optical) under a 403 lens using a video camera (HV-C20; Hitachi
Software Engineering, Yokohama, Japan).

RNA Extraction and Qualitative RT-PCR

Total RNA was extracted from adult testes from each control and heated
group using the RNeasy Mini Kit with on-column DNase digestion (Qiagen
Ltd., Crawley, West Sussex, UK). Random hexamer-primed cDNA was
prepared using the Taqman RT kit (Applied Biosystems, Foster City, CA).
Real-time quantitative PCR was performed on the ABI Prism Sequence
Detection System (Applied Biosystems). Expression of mouse Hif1a mRNA
was determined using the Assay-on-Demand gene expression primers (catalog
No. Mm00468878; Applied Biosystems), and heme oxygenase 1 (HO-1) was
detected using the Roche Universal Probe Library (Roche Applied Sciences,
Burgess Hill, UK) (forward primer: AGGCTAAGACCGCCTTCCT, reverse
primer: TGTGTTCCTCTGTCAGCATCA, probe No. 17: AGGAGCTG).
Expression levels of Hif1a and Hmox1 were corrected using an endogenous
control (18S rRNA, catalog No. 4308329; Applied Biosystems), and the fold
differences in mRNA expression of samples were relative to the internal control
sample, which was included in all runs. The results shown are the mean of at
least four mice per group, performed on two separate occasions.

Western Blotting

Total protein was extracted from frozen testes using ristocetin-induced
platelet agglutination lysis buffer, and protein concentration was determined
using a protein assay kit (BioRad; Hemel Hempstead, UK) according to the
manufacturer’s instructions. Samples (20 lg/lane) were separated on 4%–12%
polyacrylamide (w/v) gradient gels (Invitrogen, Paisley, UK) at 200 V for 1 h
and then transferred onto polyvinylidene fluoride membranes. Proteins were
detected using antibodies specific for HMOX1 (1:200), GPX1 (1:250), GST
alpha (GSTA) (1:3000), or ICAD (1:500) (Abcam, Cambridge, UK), all diluted
with Odyssey buffer (LiCor, Lincoln, NE). Bound antibodies were detected
using an analysis system (LiCor) as described in detail by Anderson et al. and
were compared with the amount of b-actin (ACTB) (1:1000; Abcam) to correct
for loading.

Statistical Analysis

Results expressed as means 6 SEMs were analyzed using one-way
ANOVA, followed by Bonferroni post hoc test. GraphPad Prism version 4
(Graph Pad Software Inc., San Diego, CA) was used for analysis.

RESULTS

Heat Stress-Induced Hypoxia in the Testis

Heat stress at 408C had no effect on expression of mRNA
encoded by the hypoxia-related gene Hif1a compared with that
in controls (Fig. 1A). However, scrotal heating at 428C induced
a significant (6 fold) increase in Hif1a mRNA expression at 6 h
(P , 0.001), which decreased to approximately twice that of
controls and subsequently increased again to 4-fold that of
controls at 7 days (P , 0.05).

Under normoxic conditions, HIF1A protein is typically
localized in the cytoplasm; however, under hypoxic conditions
proteosome-dependent degradation is reduced, and HIF1A
translocates to the nucleus, where it is able to activate
downstream genes, including vascular endothelial growth
factor and lactate dehydrogenase A [33, 34]. In control testes,
cytoplasmic staining was detected in the interstitium and
seminiferous epithelium, and no nuclear immunostaining was
observed (Fig. 1). Following heat stress at 408C or 428C, the
intensity of immunostaining in the interstitial compartment
seemed to be increased compared with that in controls (e.g.,
Fig. 1, E, F, and I [arrowheads]). Nuclear staining was detected
in a few germ cells located at the periphery of the tubule in the
408C treatment group at 24 h (Fig. 1D, arrows). In the 428C
treatment group, immunopositive staining for HIF1A was
localized to germ cell nuclei within the seminiferous tubules at

24 h (Fig. 1H), and although some immunopositive nuclei were
also detected 48 h after heat stress, the numbers were reduced
compared with those at the earlier time point, consistent with
substantial germ cell loss resulting in ‘‘gaps’’ within the
epithelium at this time point (Fig. 1I).

Heat Stress-Induced Oxidative Stress

The effect of heat stress on expression of Hmox1 mRNA,
which is reported to be expressed in Sertoli cells and Leydig
cells after heat shock [35], was measured using quantitative
RT-PCR. Transient heat stress at 408C and 428C was sufficient
to cause upregulation of Hmox1 expression (Fig. 2A). A
significant increase was observed at 6 h in the 408C treatment
group (P , 0.05). In the 428C treatment group, expression had
already increased by 3 h and remained elevated at 24 h, but by
48 h the mRNA levels in both treatment groups had decreased
to control levels. Heat stress at 408C did not induce any change
in total HMOX1 protein expression at any of the time points
measured (Fig. 2, B and C). However, in the 428C treatment
group a significant increase in total HMOX1 protein expression

FIG. 2. Hmox1 mRNA (A) and protein expression (B and C) in testes from
control and heated (408C and 428C) mice. *P , 0.05, **P , 0.01, ***P ,
0.001. B) Representative Western blot showing controls (n¼4) and heated
testis samples (n¼ 2). Lanes 1–4: controls; lanes 5 and 6: 3 h; lanes 7 and
8: 6 h; lanes 9 and 10, 24 h; lanes 11 and 12: 48 h; and lanes 13 and 14: 7
d after heat treatment. Panel C is generated from data from heated testis
samples (n ¼ 4).
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was detected in testes at 24 h (P , 0.001) and at 48 h (P ,
0.01) compared with than in controls (Fig. 2, A and C).

Heat stress also led to increased expression of two other
antioxidant enzymes, GPX1 and GST (Fig. 3). Gpx1 mRNA
was increased significantly only in the 428C treatment group at
24 h and at 48 h (Fig. 3A). However, protein levels were
significantly increased compared with those in controls at the
earlier time point of 3 h (P , 0.001) (Fig. 3B). Gsta mRNA
levels were also slightly increased at 24 h and 48 h, although
this was not significant (Fig. 3C). However, heat stress at 408C
and 428C was sufficient to cause an increase in protein levels at
3 h, and 428C caused a second increase in GST protein level at
24 h (P , 0.01 for all) (Fig. 3D).

Caspase 3-Mediated Apoptosis Is Activated Following
Scrotal Heat Stress

Testicular sections were stained for cleaved caspase 3 to
determine whether there was any change in expression of this
effector caspase (Fig. 4A). Although many of the caspase 3-
positive cells were located close to the basement membrane
and were likely to be spermatogonia, some immunopositive
spermatocytes were also present in testes recovered from the
408C and 428C treatment groups. Previous findings suggested
that spermatogonial stem cells are not susceptible to hyper-
thermia [36]. The 408C treatment group exhibited an 11-fold
increase in caspase-positive cells at 24 h, but this had decreased
to 3-fold by 48 h (Fig. 4A). In the 428C treatment group, there
was a 9-fold increase at 6 h, and at 24 h there was a significant
27-fold increase in the number of positive cells (P , 0.01).
This was still more than 10 times that of controls at 48 h.
Protein expression of ICAD was also determined (Fig. 4B).
Heat stress at 408C did not induce any changes in expression,
but a significant decrease in ICAD protein expression was seen
at 6 h and 24 h (P , 0.05 for both) following 428C heat stress.

DISCUSSION

Heat stress can disrupt spermatogenesis, causing germ cell
death and subfertility [1, 4, 6, 37], and elevated testicular
temperature has been suggested as a possible contraceptive
treatment for men [38, 39], although there may be several
undesirable adverse effects associated with this treatment. In a
previous study [6], we reported that hyperthermia resulted in a
number of detrimental effects on the testis, including DNA
damage in germ cells and mature sperm and a lengthy recovery
period of the testis from mild transient heat shock. The
objective of the present study was to elucidate the response of
the testis to this stress, which ultimately leads to the previously
observed DNA damage and germ cell loss. This was achieved
by looking at markers of hypoxia, oxidative stress, and
apoptosis.

A 1988 study [9] assessing testicular hyperthermia in rats
demonstrated a reduction in blood flow into the testis when
heated to 428C and 438C. Because the testis relies on blood
flow to provide oxygen, we examined whether a hyperthermic
stress model resulted in exposure of testes to hypoxic
conditions. HIF is a heterodimeric DNA-binding complex
expressed in all mammalian cells; it consists of an oxygen-
regulated a subunit and an oxygen-independent b subunit.
Under normoxic conditions, HIF1A subunits are rapidly
degraded via the ubiquitin-proteasome pathway; however,
when oxygen levels decrease, the protein is stabilized [40]
and translocates from the cytoplasm to the nucleus, where it
dimerizes with ARNT (also known as Hif1b) [41, 42].

In this study, expression of Hif1a mRNA and protein in
testes heated to 408C and 428C was compared with that in
controls housed under identical conditions. In the controls,
HIF1A protein was detected in the cytoplasm of interstitial
cells and in elongate spermatids, consistent with a previous
study [43] demonstrating that in situ hybridization localized
various isoforms of Hif1a mRNA to spermatids and other cell

FIG. 3. Expression of Gpx1/GPX1 (A and
B) and Gst/GST (C and D) antioxidants
(Gsta/GSTA) in control and heated (408C
and 428C) testes. **P , 0.01, ***P , 0.001
(n ¼ 4).
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types within the seminiferous epithelium. Transient heat stress
resulted in increased expression of Hif1a mRNA, apparent
increase in the intensity of immunostaining in the interstitial
compartment, and detection of immunopositive staining in the
nuclei of germ cells. In samples from testes recovered from
testes previously heated to 428C, the nuclei of spermatocytes
seemed to be immunopositive 24 h after heating. In our
experience, apoptotic germ cells can often exhibit ‘‘false-
positive’’ immunostaining reactions, but careful examination of
the sections herein revealed spermatocytes with the morpho-
logical appearance of apoptotic cells that contained no HIF1A
in their nuclei and would be consistent with stabilization and
nuclear translocation within selected germ cells. Although
stabilization of HIF1A protein under hypoxic conditions has
been widely reported, less attention has been paid to changes in
transcription of the Hif1a gene; therefore, it is notable that we
detected a significant transient increase in Hif1a mRNA 6 h
after heating at 428C. Total concentrations of mRNA were also
elevated 7 d after stress, and we assume that this was due to
continued elevation in expression within somatic cells at a time
when germ cell loss had occurred; therefore, the somatic
mRNAs were not diluted by those from germ cells (Fig. 1J).

To our knowledge, this is the first study to show heat stress-
induced hypoxia in the testis and to postulate that the reason

the testicular tissue becomes hypoxic is that heat-induced
increases in cell metabolism are not being matched by a
sufficient increase in blood flow to maintain an adequate level
of oxygenation. Although an initial study in rats by Galil and
Setchell [9] demonstrated reduced blood flow into the testis in
response to heat stress, further findings in rams showed an
increase in blood flow as a result of local heating [44]. Further
investigations are required to confirm whether the present
experimental protocol had an effect on blood flow into mice
testes.

Oxidative stress, which has been shown to cause damage to
membranes, proteins, RNA, and DNA [45], was also
investigated in the present study. The testis expresses several
antioxidants, including SOD, GSR, GST, GPX, and HMOX1,
that have the capacity to act as ROS scavengers and serve to
protect the tissue and its resident germ cells from damage
caused by oxidative stress [21, 46]. If the balance between
ROS generation and scavenging is disrupted (i.e., the amount
of ROS exceeds that of the ROS scavenging capacity),
testicular function can be disturbed. For example, treatment
with pro-oxidants such as organic hydroperoxide results in
abnormal sperm production and reduced litter size, consistent
with a significant effect on DNA integrity [47]. In humans,
oxidative stress from smoking has been shown to cause
increase oxidation of sperm DNA and poor antioxidant levels
in semen, suggesting an association between oxidative damage
and male reproductive dysfunction [48, 49] that can be
transmitted to offspring [50]. Cryptorchidism, a condition that
leads to the testis being exposed to abdominal temperatures,
causes an increase in ROS production [51], and cells isolated
from testes of 40-day-old rats produced increased levels of
peroxide when heated to 438C for 1 h [52].

In the present study, increased expression of testicular
antioxidants (HMOX1, GPX1, and GSTA) in testes subjected
to hyperthermia is consistent with a robust oxidative stress
response. It is possible that increased expression of HIF1A may
contribute to the observed increase in HMOX1, as the Hmox1
gene is reported to contain elements that bind specifically to
Hif1 to mediate hypoxia-induced gene activation [53].
Although an increase in Hmox1 mRNA was detected in testes
retrieved 6 h after heating at 408C, this was independent of any
obvious change in expression of Hif1a in these samples,
suggesting that the upregulation of Hmox1 is more likely to be

FIG. 4. Expression of apoptosis-related proteins (cleaved caspase 3 [A]
and ICAD [B]) in control and heated (408C and 428C) testes. *P , 0.05,
**P , 0.01 (n ¼ 4).

FIG. 5. Summary diagram of the possible mechanisms contributing to
germ cell death following scrotal heat stress.
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in response to the production of ROS or other free radicals in
the tissue. Changes in expression of the antioxidant enzymes
GPX1 and GSTA were also detected. In both cases, an increase
in total protein was detected only 3 h after heating at 428C,
whereas increases in mRNA (significant in the case of Gpx1)
were detected at 24 h and 48 h, suggesting that heating resulted
in protein stabilization or stimulated translation of preexisting
transcripts. The former may be more likely, as several proteins
that are involved in the response to oxidative stress seem to be
regulated by stabilization (e.g., inducible nitric oxide synthase
or NOS2 [54]), and these findings support our suggestion that
hyperthermia is causing oxidative stress within the testis.

It is known that hypoxia leads to cell cycle arrest and
apoptosis [12, 13], and oxidative stress has recently been
shown to cause depletion of germ cells [55]. We previously
demonstrated that thermal heat stress results in increased
numbers of DNA strand breaks in spermatocytes and in
increased numbers of germ cells with TUNEL-detected DNA
fragmentation [6]. In the present study, we examined whether
this process may be mediated via caspase 3, one of a group of
effector caspases. An increase in the number of germ cells that
were immunopositive for cleaved caspase 3 was detected 24 h
after heat shock at 408C or 428C, demonstrating that expression
of this protein is sensitive to slight fluctuations in temperature.
In addition, we detected a significant decrease in protein
expression of ICAD, a specific inhibitor of CAD, which is a
DNase believed to degrade DNA during apoptosis [26]. In
apoptosis, caspase 3 cleaves ICAD, releasing CAD to take part
in DNA degradation [27]; therefore, we suggest that reduced
expression of ICAD may have further amplified the apoptotic
signal.

Our studies used a model of acute transient thermal stress,
and although this might mimic the situation of a man taking a
hot bath, it begs the question as to what effect living in a hot
climate might have on testicular function. Zhu and Setchell
[28] attempted to address this question by using an alternative
mouse model in which males were housed for 24 h to an
ambient temperature of 36 6 0.38C and a relative humidity of
66% 6 5.6%. In these mice, heat stress 35 days before mating
decreased the proportion of normal embryos and blastocysts.
Cryptorchidism (natural or induced) in which testes are kept at
378C for extended periods results in germ cell apoptosis,
seminiferous tubule vacuoles, and reduced testis weight [56,
57]. However, the testis is clearly capable of an adaptive stress
response, as illustrated by the increased expression levels of
HMOX1 in the testis of patients with varicocele [58], and even
slight increases in HIF1A expression could have a major effect
on the ability of testicular cells to adapt to reduced oxygen
levels [40].

In conclusion, using a model of transient thermal stress, we
and others have detected increased expression of caspase 3 and
increased incidence of unrepaired double-strand DNA breaks
[6] and greater germ cell loss, possibly in part as a result of
reduced expression of DNA repair genes [59]. Although we
have shown that the testicular response to thermal stress
includes induction of HIF1A (consistent with hypoxia) and
increased expression of antioxidants (consistent with oxidative
stress), germ cell death still occurs. Therefore, one explanation
is that these changes are insufficient to compensate for
increased levels of ROS generated within the testis and
epididymis and that all of these factors contribute to reduced
fertility (Fig. 5). It is notable that oxidative stress has been
suggested as a common cause of male infertility and that
increased use of antioxidant therapies has been proposed [60].
Our studies provide further evidence that modest acute thermal
stress may contribute to male subfertility.
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